ChemAI 2024 Poster Session
1 - S. Abou: "Material Property Design Using Machine Learning"
2 - J. Dijkman: "Machine Learning for Classical Density Functional Theory"
3 - S. Acaru: "Artificial Intelligence in the Design of Sustainable Lignin-Polyurethane Films"
4 - R. Breebaart: "Enhanced Artificial Intelligence Molecular Mechanism Discovery of Reaction Paths in Complex Systems"
5 - K.J. van der Weg: "Towards the construction of a large foundation model for protein structures with message-passing Graph Neural Networks"
6 - E.Kempkes: "Predicting ion-responsive mechanical properties of biopolymers: A Bayesian Approach"
7 - G. Vogel: "Inverse Design of Copolymers Including Stoichiometry and Chain Architecture"
8 - T. van Heesch: "Learning The Hill-Climber’s Guide for Traversing Free-Energy Barriers in Molecular Dynamics"
9 - K. Nam: "Machine learning assisted realistic description of catalytic centers on M1 catalyst surfaces"
10 - G. Luchetti Sfondalmondo: "Artificial Intelligence-Driven Approaches for Next Generation Immunotherapies"
11 - G. Benedini: "Active Learning for ML potentials on infrared spectra prediction"
12 - R. Fedorov: "Exploration of Redox Properties in Chemical Space"
13 - A. Kryachkova: "Locked In or Breaking Free? Temperature Dependence of Water Diffusion within Fulleroid Cages"
14 - M. Pietrasik: "The Enabling Technologies for Digitalization in the Chemical Process Industry"